Свечи зажигания — краткий справочник

ВВЕДЕНИЕ

В магазинах запчастей можно найти огромное количество разнообразных свечей зажигания. Доля импортных изделий, по самым скромным оценкам, достигает 30 %. а в некоторых регионах и того выше. Это во многом связано с увеличением количества автомобилей, ввезенных из-за границы. На них, как правило, устанавливают свечи зарубежных фирм. Свечи отечественного производства существенно дешевле импортных, но их применение на иномарках носит ограниченный характер, несмотря на экономическую и техническую целесообразность. Причин этого явления много, но можно выделить три основные.
Номенклатура выпуска свечей в бывшем СССР была существенно ограничена, технический уровень изделий уступал мировому. Значительную долю в объеме производства занимали свечи устаревших конструкций, изготовленные с использованием технологий 50-60-х годов. В начале перестройки, на фоне общего спада производства в стране, качество продукции ухудшилось. В результате у многих потребителей сложилось мнение, что отечественные свечи менее надежны, чем зарубежные.
Вторая причина в том, что условия эксплуатации на отечественных автомобилях. где в основном используются свечи российского производства, значительно жестче, чем на иномарках, если учесть реальное техническое состояние этого сектора автопарка и качество используемых топлив и моторных масел. Опыт по применению свечей зарубежного производства показал, что их надежность при применении на отечественных автомобилях, особенно не новых, также значительно снижается, даже при условии правильного подбора по тепловой характеристике.
Очень существенно то, что объем информации, предназначенный для большинства потребителей свечей, явно недостаточен. Имеющаяся техническая информация носит специфический характер и содержится в стандартах и номенклатурных справочниках, мало доступных массовому читателю. В отличие от за-рубежных фирм, отечественные производители только осваивают выпуск рекламных проспектов и каталогов.
Потребители недостаточно информированы о том, что в настоящее время, в связи с растущим спросом производство свечей зажигания в России активно развивается. Расширяется номенклатура выпуска для обеспечения потребностей внутреннего и внешнего рынка. Увеличивается объем экспорта в страны не только ближнего, но и дальнего зарубежья. Большинство производимых в настоящее время отечественных свечей соответствуют зарубежным аналогам по качеству и техническому уровню.

• • •

Свечи являются важнейшим элементом систем зажигания двигателей внутрен­него сгорания. Они предназначены для воспламенения горючей смеси в цилинд­рах при помощи искрового разряда. Искровой разряд, создаваемый системой

svechi_zazhiganija_bass_1

зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.

Свечи различаются по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными. когда их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.

Искровой разряду большинства свечей образуется непосредственно в искро­вом зазоре между электродами. При «скользящей искре» разряд происходит по поверхности изолятора, установленного между электродами. Существуют свечи с комбинированным разрядом, в которых одна часть искры образуется между электродами, а другая — по поверхности изолятора.

При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химиче­ски агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.

В процессе работы из-за неполноты сгорания в пристеночной зоне на рабо­чих деталях свечи образуется нагар. В связи с возможностью шунтирования системы зажигания и отказа в искрообразовании, свечи должны самоочищать­ся, автоматически поддерживая необходимую рабочую температуру в темпера­турных пределах, обеспечивающих удаление нагара и исключающих возмож­ность калильного зажигания.

Свечи должны обеспечивать свою работоспособность в условиях, когда электри­ческие. механические и химические нагрузки соперничают между собой по своей
интенсивности. За весь срок службы свечи должны выдержать десятки миллио­нов рабочих циклов. Непрерывный рост удельных мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.

От совершенства конструкции, качества изготовления и правильности подбо­ра свечи к двигателю существенно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.

В свою очередь, работоспособность свечи зависит от ее соответствия двига­телю по конструкции, основным размерам, величине искрового зазора и тепло­вой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.

Отечественные производители свечей зажигания способны полностью обес­печить внутренний рынок и традиционные экспортные поставки качественными современными изделиями в необходимой номенклатуре. Особенность современ­ного этапа развития отечественного производства свечей заключается в том, что наряду с крупными специализированными предприятиями, изготавливающими десятки миллионов свечей в год. существуют более мелкие производители. Важ­ным фактором создания конкурентной среды является то, что некоторые зару­бежные фирмы не только ввозят готовую продукцию, но и осваивают производство свечей на территории России.

СПЕЦИАЛЬНЫЕ ТЕРМИНЫ

Верхний температурный предел те­пловой характеристики — величи­на, равная рабочей температуре свечи, при которой возникает ка­лильное зажигание.

«Горячая» или «холодная» свечи — при прочих равных условиях имею­щие соответственно большую или меньшую рабочую температуру.

Детонация — аномальный процесс сгорания, имеющий взрывной ха­рактер с резким местным повыше­нием температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.

Искрообраэование — возникновение искрового разряда в искровом за­зоре свечи в период от пробоя до угасания.

Искровая свеча зажигания (свеча зажигания, свеча) — электриче­ский ввод в комбинации с искро­вым разрядником, предназначен­ный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазо­ре между электродами.

Искровой зазор — промежуток между изолированным центральным элек­тродом и боковым электродом массы.

Искровой разряд (электрическая искра, искра) — нестационарный электрический разряд в газе, воз­никающий в электрическом поле.

Калильное зажигание — воспламене­ние горючей смеси, вызванное от­дельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Калильное число свечи — условная величина, численно равная средне­му индикаторному давлению в ци­линдре двигателя испытательной установки, при котором появляется калильное зажигание.

Контактная часть свечи — элементы со стороны высоковольтного про­вода: головка изолятора, контакт­ная головка и контактная гайка.

Нагар — образовавшиеся на поверхно­сти рабочей части свечи продукты неполного сгорания.

Нижний температурный предел те­пловой характеристики — величи­на, равная температуре рабочей части свечи, при которой нагар вы­горает.

Работоспособность свечи — обеспече­ние бесперебойного новообразова­ния и герметичности в условиях, пре­дусмотренных нормативно-техниче­ской документацией и стандартами.

Рабочая камера свечи — полость, образуемая внутренней поверхно­стью корпуса и наружной поверхно­стью теплового конуса изолятора, сообщающаяся с камерой сгора­ния двигателя.

Рабочая температура свечи — тем­пература рабочей части свечи на данном режиме работы двигателя.

Рабочая часть свечи — элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.

Тепловой конус изолятора (юбка изолятора) — часть изолятора, расположенная в рабочей каме­ре свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.

Тепловая характеристика свечи — зависимость рабочей температу­ры свечи от режимов работы дви­гателя.

Цоколь свечи — часть корпуса с резь­бой, предназначенная для уста­новки свечи в двигателе и для связи электрической цепи высоко­го напряжения системы зажигания с «массой».

Шунтирование системы зажига­ния — короткое замыкание высоко­вольтной цепи системы зажигания на «массу» при утечке тока по нага­ру на поверхности теплового кону­са изолятора и (или) по токопро­водящему мостику в искровом зазоре.

Электропроводный (токопроводя­щий) мостик — нагар, частично или полностью заполняющий искровой зазор, обладающий проводи­мостью и создающий электриче­скую цепь, замыкающую изолиро­ванный центральный электрод на «массу».

 ИСКРОВОЕ ЗАЖИГАНИЕ

Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электри­ческий ток.

Явление пробоя газа высоким напряжением обусловлено тем. что случайные электроны, появление которых вызвано проникающим ионизирующим космиче­ским излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода. При столкновении с молекулами газа про­исходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал. Это явление называется пробоем, первой фазой существова­ния искры. После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается. Первона­чально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образу­ется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.

Протекание сильного тока приводит к появлению электрической дуги, при этом температура в канале разряда при определенных условиях может достиг­нуть величины до 6000 К. Скорость расширения проводящего канала стабили­зируется, а затем уменьшается до нормальной скорости распространения пла­мени. При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К. По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.

Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается. Если напряжение оказывается недостаточ­ным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.

В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.

Если скорость расширения плазмы разряда превышает скорость распро­странения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.

УСЛОВИЯ РАБОТЫ И ТЕПЛОВАЯ ХАРАКТЕРИСТИКА СВЕЧИ

Современные поршневые двигатели внутреннего сгорания работают по четы­рехтактному или двухтактному рабочему циклу. Автомобильные двигатели, за ред­ким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осу­ществляемому за один оборот коленчатого вала и два хода поршня.

В процессе работы двигателя на свечи воздействуют переменные электриче­ские. тепловые, механические и химические нагрузки с частотой, пропорцио­нальной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.

Тепловые нагрузки. Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная — в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Темпера­тура под капотом автомобиля может достигать 150 ‘С.

На многих автомобилях, и тем более motorcycles, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к поврежде­нию изолятора.

Из-за неравномерности нагрева температура в различных сечениях свечи мо­жет отличаться на сотни градусов, что приводит к тепловым напряжениям и дефор­мациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.

Механические нагрузки. Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/смг и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

Химические нагрузки. При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материа­лов. тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900 ‘С.

Электрические нагрузки. При новообразовании, длительность которого может составлять до 3 мс, изолятор свечи оказывается под воздействием им­пульса высокого напряжения, максимальное значение которого зависит от дав­ления и температуры в камере сгорания и величины искрового зазора. В неко­торых случаях напряжение может достигать 20-25 кВ (амплитудное значение).

Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напря­жение поверхностного перекрытия изолятора.

В дуговой фазе разряда протекание сильного тока приводит к появлению го­рячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000 К, что выше температуры плавления любого материала электро­дов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.

ОТКЛОНЕНИЯ ОТ НОРМАЛЬНОГО ПРОЦЕССА СГОРАНИЯ

Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастани­ем температуры и давления в цилиндре двигателя. В результате искрового зажи­гания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.

При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям мож­но отнести следующие.

Пропуски воспламенения. Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

Калильное зажигание. Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи. Преждевременное воспламе­нение может быть вызвано тлеющими частицами нагара. При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажига­ния. Это приводит к росту скорости нарастания давления и температуры, увели­чивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоря­ющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.

При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.

Детонация. Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхно­стей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени. Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электро­ды могут оплавиться и даже полностью выгореть. Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двига­теля, увеличение расхода топлива и иногда появление черного дыма из выпуск­ной трубы.

Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке. Наиболее вероятен выход на этот режим при движении автомобиля на подъеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточ­ном в данных условиях октановом числе топлива возникает детонация, сопровож­даемая звонким металлическим стуком.

Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.

Безусловным является требование использовать только топливо, соответст­вующее двигателю по октановому числу.

Дизелинг. В некоторых случаях возникает крайне неравномерная неуправляе­мая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспла­менения горючей смеси при сжатии, подобно тому, как это происходит в дизелях, В русской технической литературе -дизелинг» является сравнительно новым тер­мином, взятым из английского языка (dieseling).

На двигателях, преимущественно карбюраторных, где не исключена воз­можность подачи топлива в цилиндр при выключенном зажигании, дизе­линг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравно­мерно. Это может продолжаться несколько секунд, иногда дольше, затем двига­тель самопроизвольно останавливается. Объяснять это явление калильным за­жиганием от перегретой свечи было бы неправильно, она тут ни при чем.

Причина дизелинга — в особенностях конструкции камеры сгорания и в каче­стве топлива (то есть дизелинг наступает при низкой стойкости топлива к само­воспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламене­ния горючей смеси. Калильное зажигание возникает при температуре электро­дов и изолятора 850-900 ‘С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя темпе­ратура этих деталей не превышает 350 ‘С. Свеча в этих условиях не причина, а скорее -жертва», так как из-за неполноты сгорания усиливается процесс обра­зования нагара.

КАЧЕСТВО ТОПЛИВА И МОТОРНОГО МАСЛА

Для обеспечения нормальной работы свечей автомобильные бензины долж­ны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.

Детонационная стойкость топлива зависит от его химического состава и структу­ры углеводородов, полученных при переработке нефти. Способность сопротив­ляться появлению детонации зависит от молекулярной массы — чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.

Промышленное производство бензина включает первичную и вторичную перера­ботку нефти с последующим смешением различных компонентов для получения необходимых свойств.

При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке неф­ти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологи­ческой обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензи­на увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторич­ной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной марки, производимые на разных предпри­ятиях. в связи с разницей в технологии, имеют несколько различные составы.

Для повышения октанового числа в бензин добавляют антидетонаторы — хи­мические соединения, подавляющие детонацию. Для удаления из камеры сгора­ния продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители — химические вещества, способствую­щие удалению продуктов сгорания. Тем не менее, условия работы свечи при ис­пользовании антидетонаторов существенно ухудшаются.

Полностью удалить продукты сгорания не удается, и на электродах и тепло­вом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или пол­ный отказ в искрообразовании.

Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15 % метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются раз­личные железосодержащие антидетонаторы и традиционный антидетонатор на ос­нове тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.

К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.

Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз. ФК-4 или АПК вызывает отложение токо­проводящего нагара красного цвета на свечах. Этот нагар практически невоз­можно удалить, он приводит к полному и необратимому их отказу.

Коррозионное воздействие бензина определяется содержанием кислот, щело­чей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способст­вуют образованию нагара, однако полностью избавиться от них непросто, особен­но при переработке сернистой нефти.

Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, мою­щие и т. д. При сгорании масла, попавшего 8 камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.

ОБРАЗОВАНИЕ НАГАРА И САМООЧИЩЕНИЕ

Нагар на свече — это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200 ‘С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторно­го масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замы­кание во вторичной цепи системы зажигания. И в том, и в другом случае происхо­дит частичное или полное прекращение искрообразования. Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важней­ших требований к свече — способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.

Удаление нагара, если в продуктах сгорания нет несгораемых веществ, проис­ходит при температуре 300-350 ‘С — это нижний температурный предел работо­способности свечи. Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания. То же самое требуется для предотвращения утечек тока и соот­ветственно для снижения потерь энергии зажигания.

ТЕПЛОВАЯ ХАРАКТЕРИСТИКА

Тепловая характеристика свечи — это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.

Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора (рис. 2).

Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать 850-900 ‘С, так как при этом возникает калильное зажига­ние. Эта величина является верхним температурным пределом работоспособности свечи.

svechi_zazhiganija_2

Температурные пределы работо­способности свечи неизменны на лю­бом двигателе вне зависимости от его удельной мощности и особенности конструкции.

В настоящее время еще не создана экономически обоснованная и техно­логически выполнимая в массовом производстве свеча, которая была бы способна работать на любом двигате­ле, поддерживая рабочую температуру в допустимых температурных преде­лах. Для обеспечения этого условия на двигателях, отличающихся тепловой напряженностью, свечи изготавливают с различными тепловыми характерис­тиками.

Непрерывный рост удельных мощ­ностей двигателей при ужесточении норм токсичности отработавших газов требует улучшения тепловых характе­ристик свечей. В настоящее время на­иболее распространены следующие методы их улучшения.

  1. Сборку свечей осуществляют с минимально возможными зазорами между деталями. Полностью устра­нить зазоры не удается из-за различия коэффициентов термического расши­рения изолятора и металлических де­талей.
  2. Центральный электрод изготав­ливают биметаллическим: из меди с жа­ростойкой оболочкой из сплава на осно­ве Ni-Cr-Fe .
  3. Тепловой конус изолятора де­лают выступающим из корпуса на 1,5-2,0 мм .

Первые два метода обеспечивают высокую теплопроводность свечи в це­лом, позволяют существенно увели­чить длину теплового конуса изолятора без увеличения его максимальной ра­бочей температуры и. следовательно, улучшить тепловую характеристику. Выступание изолятора за торец корпу­са ускоряет прогрев теплового конуса в зоне нижнего температурного предела.

svechi_zazhiganija_3

svechi_zazhiganija_4

Выступание теплового конуса изолятора за торец корпуса рекомендуется только для тех двигателей, где это не приводит к перегреву в зоне верхнего пре­дела. В некоторых случаях, например на форкамерных или двухтактных двигате­лях, выступающий тепловой конус изолятора может оказаться в потоке горючей смеси, переобогащенной топливом или моторным маслом, что приводит к уси­лению нагарообразования.

Чем меньше шестигранник и диаметры корпуса и изолятора и чем больше длина цоколя, тем лучше охлаждение свечи на двигателе. В связи с этим наи­большее распространение получили свечи с плоской опорной поверхностью, резьбой на корпусе М14х1.25 мм. длиной резьбовой части 19,0 мм и шестигран­ником подключ 16,0 или 20,8 мм. При таких размерах изолятор еще имеет доста­точную электрическую и механическую прочность, а размеры электродов позво­ляют обеспечить необходимую долговечность без применения дорогостоящих материалов. Свечи с конической опорной поверхностью позволяют дополни­тельно уменьшить диаметр корпуса. Их применение на отечественных автомоби­лях ограничивается механической прочностью, меньшей, чем у свечей с плоской опорной поверхностью.

Страницы: 1 2 3